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Abstract. The paper presents some new chapters of the relativistic circuit theory, which are part 

of the special theory of relativity. It explores the alternating current regimes in the linear electric 

circuits, which are moving with very high speeds less than the speed of light. In the paper a large 
group of basic problems, connected with the relativistic fundamental laws in the time domain and in 
phasor form for the linear electric circuits are observed. The relativistic forms of the phasors of the 
basic quantities of the electric circuits (currents, voltages), the complex powers and the relativistic re-
lations of the basic parameters of the circuits (angular frequencies, phases, phase shifts, reactances, 
susceptances, impedances, admittances) are presented, too. Additionally, some phenomena as reso-
nances and transient processes in fast moving linear electric circuits are observed, as well. All the 
formulas in the paper are extracted consecutively and they are followed by explanations in full de-
tails. The final results are supported by many simple examples about fast moving linear electric cir-
cuits. 
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1 Introduction 

The creation of the electromagnetic (EM) field theory had a great influence on the modern physics 
(Maxwell, 1861, 1865, 1873). It was the main reason for the appearance of the Special Theory of Rela-
tivity (STR) (Einstein, 1905, 1908), (Feynmann, 1964a), (Kittel, 1963), which changed the modern 
views on the surrounding phenomena. As a consequence of it was the relativistic correction of the 
Maxwell-Hertz set of equations of the EM field for moving electromagnetic objects (Maxwell, 1873), 
(Hertz, 1890), (Feynmann, 1964b), (Purcell, 1965), (Simoniy, 1964), (Smythe, 1989) and the result 
was the creation of the Maxwell-Hertz-Einstein set of equations of the EM field. The appearance of 
the Rotary Theory (RT) of the EM field established some corrections in that set by the method of mo-
ments (Panov, 2015, 2017a, 2017b). For a long time the Circuit Theory (CT), being a complementary 
theory of the EM theory, was not presented very well in relativistic form. There are some scientists, 
who believe that: …”The important consequences… (of STR) … are related to the sphere of physics, 
but not to electrical engineering...”… (Simonyi, 1964, p. 725). At the same time there is a group of 
scientists who present in their monographs some elements of the Relativistic Circuit Theory (RCT) (or 
the Special Circuit Theory (SCT)) (Pauli, 1958), (Meerovich, 1966), (Polivanov, 1982), (Meerovich, 
1987). In (Panov, 2018) a substantial step forward was done trying to present the basic laws, quantities 
and parameters of the electric circuits in relativistic form. 

In the present paper some additional questions connected with the fast moving electric circuits are 
observed and they are connected with the alternating current (AC) regimes in the electric circuits. In 
this case a series of basic questions, connected with the relativistic forms of the fundamental laws in the 
time domain and in phasor form for the linear electric circuits, are discussed. The relativistic forms of the 
phasors of the currents and the voltages in the electric circuits, the complex powers and the basic pa-
rameters of the circuits (angular frequencies, phases, phase shifts, reactances, susceptances, impedances, 
admittances) are presented, too. Additionally, resonances and transient processes in fast moving linear 
electric circuits are observed, as well. The main results are illustrated by the help of some simple exam-
ples with fast moving electric circuits. 
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2 Analysis 

2.1 Relativistic laws of moving AC electric circuits 

 
The basic principle of STR, the relativity principle, states that the physical laws preserve their basic 

forms in each inertial coordinate system (Einstein, 1905). If there is a static Cartesian coordinate sys-
tem S and another system S’, which is moving with a speed xvv

rr =  towards the first one along its x-

axis and if there is a static electric circuit in the last coordinate system S’, then we can explore the be-
havior of that circuit, which is moving towards the first coordinate system S (Fig. 1 – Fig. 23). In 
(Panov, 2018) the relativistic forms of the Kirchhoff’s laws for direct current (DC) regimes were pre-
sented. The case when AC regimes are observed their forms are similar, but they are related to the 
instantaneous values of the currents and the voltage drops. 

If we introduce the coefficient of relativity as: 
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where c is the speed of light in vacuum and cv0 ≤≤  and if we use the transverse and the longitudinal 
components of the EM quantities according to the notations of Einstein-Laub (Einstein, 1908), both 
laws receive very simple forms. 

Having in mind the connection between the moments of time t’ and t in both coordinate systems S’ 
and S: 

                                                                 
2

2

c

v
1.t

t
't −==

γ
                                                    (2) 

we can formulate the Kirchhoff’s current law for the instantaneous values of the conduction currents in 
the time domain in the fast moving electric circuits in relativistic form as follows: 
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In the moving coordinate system 'S  it will look like: 
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The relativistic relations among the last eight equations are as follows: 
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Here, 
k.cond'i  or 

k.condi  is an instantaneous conduction current in the coordinate systems 'S  or S, cor-

respondingly and: 
                                                             ( ) ( ) ( )tititi

kkk .convII.condIIII +=                                             (12) 

where ( )ti
k.convII  is an instantaneous convection current in the coordinate system S. So, equation (11) 

depicts the relativistic Kirchhoff’s current law. The main meaning is connected with the fact that the 
sum of the instantaneous conduction currents equals zero in each inertial coordinate system. 

If we use similar reasoning, it is possible to write down the relativistic connections among the volt-

age drops in the coordinate systems 'S  and S: 
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Using the last two equations we can formulate the Kirchhoff’s voltage law in relativistic form in the 

time domain. In the moving coordinate system 'S  it will look like: 
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In the static coordinate system S  it will look like: 
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The relativistic relations among the last eight equations are as follows: 
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In the last few equations 
k.condu′  or 

k.condu  is a voltage, which is the reason for the flowing of a con-

duction current. Except that: 
                                                            ( ) ( ) ( )tututu

kkk .ind.cond ⊥⊥⊥ +=                                              (22) 

At the same time the voltage ( )tu
k.ind⊥  is a result of the unipolar induction. Here, equation (21) de-

picts the relativistic Kirchhoff’s voltage law. The main meaning is connected with the fact that the 
sum of the instantaneous voltage drops in a contour of a circuit equals zero in each inertial coordinate 
system. 

The integral form of Joule’s law for a finite longitudinal or transverse element of a conductor with 
conduction current is as follows: 
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where '
IIP , IIP , '

P⊥  and ⊥P  are the instantaneous powers, caused by the conduction currents in the 

coordinate systems 'S  and S . Relations among the powers in the coordinate systems 'S  and S  are 
also presented in (Pauli, 1958). 

The integral form of Ohm’s law for a finite longitudinal or transverse element of a conductor with 
conduction current is as follows: 
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where '
IIR , IIR , '

R⊥  and ⊥R  are the resistances of the longitudinal or the transverse element of a con-

ductor in the coordinate systems 'S  and S . Some relations among the parameters of the resistances in 
both coordinate systems are presented in (Meerovich, 1966). 

2.2  Basic relations of the parameters of fast moving AC linear electric circuits 

 
In (Panov, 2018) the relations among the resistances and the coductances of the conductors of fast 

moving circuits in the coordinate systems 'S  and S  were extracted: 
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Here, '
IIG , IIG , '

G⊥  and ⊥G  are the conductances of a longitudinal or a transverse element of a con-

ductor in the coordinate systems 'S  and S . 

In (Panov, 2018) another important relations were extracted for the capacitances ( '
IIC , IIC , '

C⊥ , 

⊥C ) and the inductances ( '
IIL , IIL , '

L⊥ , ⊥L ) of the reactive elements of the explored electric circuits 

in the coordinate systems 'S  and S : 
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The instantaneous values of the stored energy of a charged capacitor (
IIC'W , 

IICW , 
⊥ C'W , 

⊥CW ) 

and a coil with a current (
IIL'W , 

IILW , 
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⊥LW ) in both coordinate systems in case of AC re-

gimes have the following forms: 
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The last four equations are received by the help of equations (25), (26), (29), (30), (31) and (32). 
In order to introduce the basic relations among the rest of the parameters of the fast moving electric 

circuits as the angular frequencies, the phases, the phase shifts, the reactances, the susceptances, the im-
pedances and the admittances of the elements of these circuits, it is better to start with some simple ex-

amples of such AC electric circuits in the coordinate systems 'S  and S . 

2.3 Time domain analysis and phasor approach of fast moving AC linear electric 

circuits 

 
In Fig. 1 a serial RL electric circuit is presented, which is operating in harmonic regime and at the 

same time it is moving with a uniform speed xv
r

 along the x-axis of a static Cartesian coordinate 

system S. It can be explored also in the moving coordinate system S’, towards which the circuit is in a 
static position. We need to analyze the basic quantities and parameters of that fast moving electric 
circuit in both coordinate systems firstly in time domain and then by the help of the phasor approach in 
the Gaussian complex plane. 
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Fig. 1. A moving serial RL electric circuit with a uniform speed xv
r

 towards a static Cartesian coordinate system 

S. 

If the electromotive force (e.m.f.) of the voltage source has a zero phase shift, then the current in 
the coordinate system S’ will be: 
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where p'i  and p'e  are peak values of the current and the e.m.f. In the coordinate system S that current 

will have the following form: 
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from where it is well seen that the peak values of the voltages and the currents are transformed accord-
ing to formulas (3), (4), (13) and (14). The relations among the angular frequencies, the phase shifts 
and the phases are as follows: 
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Equation (39) corresponds to the result from the transverse Doppler effect (Kittel, 1963, p. 344). 

In Fig. 2 a simple serial RC electric circuit is presented, which is operating in harmonic regime and 
which is moving towards the coordinate system S. If the electromotive force (e.m.f.) of the voltage 
source has a zero phase shift, then the current in the coordinate system S’ will be: 
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Fig. 2. A moving serial RC electric circuit with a uniform speed xv
r

 towards a static Cartesian coordinate system 

S. 
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In the coordinate system S that current will have the following form: 
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The magnitudes of the impedances of the circuits presented in Fig. 1 and Fig. 2 in both coordinate 
systems S’ and S preserve their values: 
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The triangles of the magnitudes of the impedances of both circuits (Fig. 3 and Fig. 4) preserve their 
forms and scales in the coordinate systems S’ and S. Here, it is accepted for simplicity that the value of 
the phase shift of the current in the coordinate systems S’ is zero. 
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Fig. 3. Triangles of the impedances of a moving serial RL electric circuit with a uniform speed xv
r

 towards a 

static Cartesian coordinate system S. 
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Fig. 4. Triangles of the impedances of a moving serial RC electric circuit with a uniform speed xv
r

 towards a 

static Cartesian coordinate system S. 

The real powers, the reactive powers and the apparent powers of both circuits in the coordinate sys-
tems S’ and S are connected with the following relations: 
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These two equations express also the balance of powers for these two electric circuits. The final result 
is connected as well with the power triangles in both coordinate systems S’ and S, which preserve their 
forms, but they don’t preserve their scales (Fig. 5 and Fig. 6). 
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Fig. 5. Triangles of the powers of a moving serial RL electric circuit with a uniform speed xv
r

 towards a static 

Cartesian coordinate system S. 
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Fig. 6. Triangles of the powers of a moving serial RC electric circuit with a uniform speed xv
r

 towards a static 

Cartesian coordinate system S. 

It is well known that the phasor approach is a very appropriate transform (operational) method for 
analysis of linear electric circuit operating in harmonic regimes. Having in mind equations (3), (4), 
(13), (14), (39), (40) and (41), the basic relations among the quantities (currents, voltages, powers) in 
phasor form can be extracted and they are as follows: 
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=== I.e.I.e'.I'I j'j γγ ψψ                                                  (48) 
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Here, 1j −=  is the imaginary unit; the currents and the voltages are presented with their root-mean-

square (r.m.s.) values; 
•
'S  and 

•
S  are complex powers in both coordinate systems S’ and S;

∗
'I  and 

∗
I  

are the conjugate values of the phasors 
•
'I  and 

•
I . The operator of rotation in positive direction pre-

serves its value: 
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                                                                          t.j't'.j ee ωω =                                                             (51) 

The same fact is valid for the impedances and for the admittances of the elements of the circuits: 

                                                                Ze.ze'.z'Z .j'j === αα                                                      (52) 

                                Ye.ye.y
e.z

1

Z

1
e'.ye'.y

e'.z

1

'Z

1
'Y jj

j

'j'j

'j
========= −− δα

α
δα

α             (53) 

The equivalent circuits of the networks, given in Fig. 1 and  Fig. 2, in phasor form are presented in 
Fig. 7 and Fig. 8, correspondingly. 

The vector diagrams of both circuits are presented in Fig. 9 and Fig. 10. These vector diagrams pre-
sent Kirchhoff’s voltage law in phasor form graphically: 
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=+=+= E.U.U.'U'U'E CR'C'R γγγ                                      (55) 
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Fig. 7. Equivalent circuit of a moving serial RL electric circuit with a uniform speed xv
r

 towards a static Carte-

sian coordinate system S according to the phasor approach. 
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Fig. 8. Equivalent circuit of a moving serial RC electric circuit with a uniform speed xv
r

 towards a static Carte-

sian coordinate system S according to the phasor approach. 
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Fig. 9. Vector diagram of a moving serial RL electric circuit with a uniform speed xv
r

 towards a static Cartesian 

coordinate system S according to the phasor approach. 
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Fig. 10. Vector diagram of a moving serial RC electric circuit with a uniform speed xv
r

 towards a static Carte-

sian coordinate system S according to the phasor approach. 

In case of fast moving parallel electric circuits, the results are similar to these, which were extract-
ed so far. In Fig. 11 a parallel RL circuit is presented, and in Fig. 12 a parallel RC circuit is given, too. 
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Fig. 11. A moving parallel RL electric circuit with a uniform speed xv
r

 towards a static Cartesian coordinate 

system S. 
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Fig. 12. A moving parallel RC electric circuit with a uniform speed xv
r

 towards a static Cartesian coordinate 

system S. 

If the electromotive forces (e.m.f.) of the voltage sources have zero phase shifts, then the input 
currents in the coordinate systems S’ and S will be: 
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The magnitudes of the admittances of the circuits presented in Fig. 11 and Fig. 12 in both coordi-
nate systems S’ and S preserve their values: 
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The triangles of the magnitudes of the admittances of both circuits (Fig. 13 and Fig. 14) preserve their 
forms and scales in the coordinate systems S’ and S. 
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Fig. 13. Triangles of the admittances of a moving parallel RL electric circuit with a uniform speed xv
r

 towards a 

static Cartesian coordinate system S. 

The equivalent circuits of the networks, given in Fig. 11 and Fig. 12, in phasor form are presented 
in Fig. 15 and Fig. 16. 

The vector diagrams of both circuits are presented in Fig. 17 and Fig. 18. These vector diagrams 
present Kirchhoff’s current law in phasor form graphically: 
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Fig. 14. Triangles of the admittances of a moving parallel RC electric circuit with a uniform speed xv
r

 towards a 

static Cartesian coordinate system S. 

                                                           
••••••

=+=+= I.I.I.'I'I'I LR'L'R γγγ                                          (60) 

                                                           
••••••

=+=+= I.I.I.'I'I'I CR'C'R γγγ                                          (61) 
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Fig. 15. Equivalent circuit of a moving parallel RL electric circuit with a uniform speed xv
r

 towards a static Car-

tesian coordinate system S according to the phasor approach. 

 

O

y

x

z S

x’

y’

z’

O’

S’

xv
r

(b)(a)

•
'E

'C'I
•

'R'Z

•
'I

'C'Z

'R'I
•

•
I

RI
•

•
E

RZ CZ

CI
•

 

Fig. 16. Equivalent circuit of a moving parallel RC electric circuit with a uniform speed xv
r

 towards a static Car-

tesian coordinate system S according to the phasor approach. 
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Fig. 17. Vector diagram of a moving parallel RL electric circuit with a uniform speed xv
r

 towards a static Carte-

sian coordinate system S according to the phasor approach. 
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Fig. 18. Vector diagram of a moving parallel RC electric circuit with a uniform speed xv
r

 towards a static Carte-

sian coordinate system S according to the phasor approach. 

2.4 Resonance in fast moving AC linear electric circuits 

 
In Fig. 19 a serial RLC electric circuit operating in harmonic regime is presented, and in Fig. 20 a 

parallel RLC circuit is given, too. 
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Fig. 19. A moving serial RLC electric circuit with a uniform speed xv
r

 towards a static Cartesian coordinate 

system S. 
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Fig. 20. A moving parallel RLC electric circuit with a uniform speed xv
r

 towards a static Cartesian coordinate 

system S. 
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The angular frequency was already presented by equation (39) and it was shown that the result cor-
responds to that from the transverse Doppler effect (Kittel, 1963, p. 344). The relation among the res-
onant frequencies r'ω  and rω  in both coordinate systems S’ and S in case of these two electric circuits 

can be extracted by the Thompson’s formula: 
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It confirms the result received by equation (39). 

The relations among the wave resistances ρ’ and ρ and the quality factors Q’ and Q in both coordi-
nate systems S’ and S of the serial RLC circuit are as follows: 

 

            ρ
ω

γ
ωγω

ω
γ

ωγωρ ===========
rrrr C

r
r

r
'CLrrr'L X

C.

1

C
..

1

'C.'

1
'XXL.

L
..'L.''X'    (63) 

 

                                          Q
RC.R.

1

R

L.

'C'.R'.

1

'R

'L'.

'R

'
'Q

r

r

r

r ======= ρ
ω

ω
ω

ωρ
                          (64) 

The relations among the wave conductances δ’ and δ and the quality factors Q’ and Q in both coor-
dinate systems S’ and S of the parallel RLC circuit are as follows: 
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So, the wave resistances, the wave conductances and the quality factors preserve their values in both 
coordinate systems. 

2.5 Transient processes in fast moving linear electric circuits 

 
Some of the interesting regimes in the fast moving linear electric circuits are connected with the 

transient processes. In Fig. 21 a first order RL linear electric circuits is presented, and in Fig. 22 a first 
order RC linear electric circuit is given, too. If the commutations occur at the moment 0't =  in the 
coordinate system S’, then the currents in the coordinate systems S and S’ will be aperiodic and they 
will have the following forms: 
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Here, statesteady'i −  and statesteadyi −  are the steady state values of the flowing currents; ( )+0'i , ( )+0i , 

( )+− 0'i statesteady  and ( )+− 0i statesteady  are the initial conditions (the initial values of the currents) after 

the commutation; 
'

1
'k

τ
−=  and 

τ
1

k −=  are the roots of the characteristic equations of the explored 

circuits. It is clear that the time constants τ’ and τ in both coordinate systems S’ and S are connected 
with the following relations: 
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In Fig. 23 a second order serial RLC linear electric circuit is presented. In such a circuit three dif-
ferent transient processes are possible depending on the values of the roots of the characteristic equa-
tion of the circuit k’1 and k’2. 

If the roots are: 21 'k'k ≠ ; Re'k,'k 21 ∈ ; 0'k,0'k 21 << , then the transient process is overdamped: 

            

( )








=++=

=
−

+
−

−=
−

+
−

−=

=++=++=

−

−−

γ
γγγγ

γγ
γγγ γ

γ
γ

γ

t
i.e.A.e.A.i.

e.
kk

k.k.e.C.
e.

kk

k.k.e.C.
e.

'k'k

'k.'k.'e'.C
e.

'k'k

'k.'k.'e'.C

e.A.e.A.i.e.'Ae.'A'i't'i

t.k
2

t.k
1statesteady

t.k

12

211t.k

12

211't.'k

12

211't.'k

12

211

t
.k.

2

t
.k.

1statesteady
't.'k

2
't.'k

1statesteady

21

2121

21
21

      (72) 



 

 

DOI: 10.29114/ajtuv.vol2.iss2.88  

Vol 2  No 2 (2018)  

ISSN 2603-316X (Online) Published:   2018-12-21  

 

 Page | 37  
 

 

O

y

x

z S

x’

y’

z’

O’

S’

xv
r

(b)(a)

1'e

( )'t'u 'L

'R

( )'t'i

'L

( )'t'u 'R

'S

1e

( )tuL

R

( )ti

L

( )tuR

S

 

Fig. 21. A moving first order RL electric circuit with a uniform speed xv
r

 towards a static Cartesian coordinate 

system S. 
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Fig. 22. A moving first order RC electric circuit with a uniform speed xv
r

 towards a static Cartesian coordinate 

system S. 

If the roots are: 21 'k'k = ; Re'k,'k 21 ∈ ; 0'k,0'k 21 << , then the transient process is critically 

damped: 
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If the roots are: 'j''k 2,1 Ωβ ±−= ; Compl'k,'k 21 ∈ , then the transient process is underdamped: 
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Here, β’ and β are damping coefficients; Ω’ and Ω - natural angular frequencies; µ’ and µ - phase 
shifts. Here, it is obvious, that: 

                                                                          2,12,1 k.'k γ=                                                              (75) 
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                                                                             βγβ .' =                                                                 (76) 

                                                                            ΩγΩ .' =                                                                (77) 

                                                                             µµ ='                                                                    (78) 
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Fig. 23. A moving second order RLC electric circuit with a uniform speed xv
r

 towards a static Cartesian coordi-

nate system S. 

3 Conclusions 

 
As a result of the research, the basic laws (Kirchhoff’s current law, Kirchhoff’s voltage 

law, Ohm’s law, Joule’s law and the energy conservation law) in relativistic form for fast 
moving electric circuits, operating in AC regimes, were extracted. The relativistic forms of the 
phasors of the basic quantities of the electric circuits (currents, voltages), the complex powers 
and the relativistic relations of the basic parameters of the circuits (angular frequencies, phases, 
phase shifts, reactances, susceptances, impedances, admittances) were presented, too. 
Additionally, resonances and transient processes in fast moving linear electric circuits were 
observed, as well. The corresponding formulas were extracted step by step in order to show the 
way of reasoning. All that is an essential part of the RCT, which additional research can be very 
useful for exploration of the EM processes in fast moving electric circuits... 
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