Application of machine learning methods for the prediction of distress in patients with oncological diseases
Abstract
Distress management is of particular importance in all disease treatment strategies that aim to cope with medical conditions, which require prolonged therapy. Here, we present results obtained in a comparative study of various classification methods for automated distress detection. For the purposes of the present study, use was made of a common experimental protocol that relies on a dataset of approximately 6 000 oncological patients at different stages of therapy. The dataset consists of the binary responses to specific questions in a purposefully-designed self-evaluation questionnaire on the degree of distress. Conducted, within such a framework, was a performance assessment of three distress detectors based on Multilayer Perceptron Neural Network (MLP NN), boosting and bagging meta-classification methods and evaluated, further, was the performance of nine characteristic descriptors (KR1-KR9) representing the informative content of the dataset in different ways. The results obtained in the experiments prove conclusively that one of the characteristic descriptors, KR8 and KR9, significantly outperform the other descriptors in terms of classification accuracy, precision, recall, and F-measure.
References
VanHoose L. еt al. (2015) An analysis of the distress thermometer problem list and distress in patients with cancer, Support Care Cancer, 23, 1225-1232.
Crossref
Riba, Michelle B. et al. (2019). Distress Management, Version 3, NCCN Clinical Practice Guidelines in Oncology, JNCCN.org, 17(10), 1229-1249.
Crossref
Власаков, В., и колектив (2015) Психосоциална подкрепа и рехабилитация в онкологията, национален експертен борд клинично ръководство, основано на доказателства, Атр Трейсър.
Breiman, L. (1996) Bagging Predictors, Machine Learning , 24, 123-140.
Crossref
Кашницкий, Ю.С., & Игнатов, Д.И. (2015) Ансамблевый метод машинного обучения, основанный на рекомендации классификаторов Интеллектуальные системы, Теория и приложения, Интеллектуальные системы. Теория и приложения, 19(4), 37-55.
Google Scholar
Mitchell, T. (1997). Machine Learning. McGraw-Hill, vol 1.
Kantardzic, M., (2002) Data Mining Concepts, Models, Methods, and Algorithms,(1st ed.) Wiley-IEEE Press.
Google Scholar
Hossin, M., Sulaiman, M.N. (2015) A Review on Evaluation Metrics for Data Classification Evaluations, International Journal of Data Mining & Knowledge Management Process (IJDKP), 5(2), 1-11.
Crossref
Калчева-Арабаджиева, Н., & Николов, Н. (2017) Сравнителен анализ между наивния бейсов класификатор и метода на опорните вектори използващ оптимизация при класификация на български текст в машинното обучение, Списание Компютърни науки и технологии, ТУ - Варна, 97-105.
Zhu W., Zeng, N, & Wang, N. (2010) Sensitivity, specificity, accuracy, associated confidence interval and ROC analysis with practical SAS implementations, NESUG: Health Care and Life Sciences, 19, 1-9.
Google Scholar
Powers, D.M.W., (2011) Evaluation: From precision, recall and F-measure to ROC, informedness, markedness & correlation, Journal of Machine Learning Technologies, 2(1), 37-63.
Google Scholar
Muhamedyev, R. (2015) Machine learning methods: An overview, Computer Modeling &New Technologies, 19(6), 14-29.
Google Scholar
Marinova, G., Ganchev, T., and Nikolov, N., (2020) Synthesis of characteristic descriptors for the detection of distress, 2020 International Conference on Biomedical Innovations and Applications (BIA), Varna, Bulgaria, 73-76,
Crossref
Total number of hits on abstract = 298 times
Downloads for 2024
This work is licensed under a Creative Commons Attribution 4.0 International License.