System for assessment and forecast of air quality in populated areas

  • Milena Nikolova Mileva-Karova Technical university of Varna http://orcid.org/0000-0001-9025-6699
  • Tsvetelin Angelov Petrov Технически университет - Варна
  • Kristian Ivanov Ivanov Technical University of Varna
  • Nayden Nikolaev Nikolov Technical University of Varna
  • Tony Angelov Gadzhev Technical University of Varna
Keywords: measuring, station, data base, forecasting, machine learning, neural network, servers

Abstract

The paper provides an account of a system for collecting data, forecasting and assessing the quality of ambient air in a given locality. The developed system allows for extremely sustainable analysis of the results and due consideration of the utilization of artificial intelligence algorithms and methods for the development of accurate forecasts. The obtained results are expected to detect the problems related to the quality of air before their actual occurrence.

References

Centers for Disease Control and Prevention (2020). Air Quality https://www.cdc.gov/nceh/tracking/topics/AirQuality.htm


Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathanie J. Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Hal-dane, Jaime Fernández del Río, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi, Christoph Gohlke & Travis E. Oliphant (2020). Array programming with NumPy.
Crossref


Daniel Vallero (2008). Fundamentals of Air Pollution, Fourth Edition, 2 – IV


Dobrea, M., Bădicu, A., Barbu, M., Subea, O., Bălănescu, M., Suciu, G., ... & Dobre, C. (2020, October). Machine Learning algorithms for air pollutants forecasting. In 2020 IEEE 26th International Symposium for Design and Technology in Electronic Packaging (SIITME) (pp. 109-113). IEEE.
Crossref


National Center for Atmospheric Research, Boulder (2009). Implications of Climate Change for Air Quality https://public.wmo.int/en/bulletin/implications-climate-change-air-quality


Seyedeh Reyhaneh Shams, Ali Jahani, Saba Kalantary, Mazaher Moeinaddini & Nema-tollah Khorasani (2021). Artifcial intelligence accuracy assessment in ­NO2 concentration forecasting of metropolises air.
Crossref


Динева К. (2020). ИНТЕГРИРАНЕ НА ХЕТЕРОГЕННИ ДАННИ ОТ РАЗПРЕДЕЛЕНИ IoT УСТРОЙСТВА https://www.iict.bas.bg/konkursi/2020/KrDineva/dissertation.pdf


Министерството на околната среда  и водите, Министерството на здравеопазването (2010г). НАРЕДБА № 12 ОТ 15 ЮЛИ 2010 Г. ЗА НОРМИ ЗА СЕРЕН ДИОКСИД, АЗОТЕН  ДИОКСИД,  ФИНИ ПРАХОВИ ЧАСТИЦИ, ОЛОВО, БЕНЗЕН, ВЪГЛЕРОДЕН ОКСИД И ОЗОН В АТМОСФЕРНИЯ ВЪЗДУХ.


Петров Ц., Иванов К. (2020). Предложение за финансиране на клубен проект от СК “Cre-ative Code;” - ТУ Варна, ‘Анализ и реализация на модел за оценка и прогнозиране на качеството на въздуха.’


Пулич В. (2014). Замърсяването на въздуха и здравето в България Факти, данни и препоръки, Декември. Retrieved from https://env-health.org/IMG/pdf/heal_briefing_air_bulgaria_bgversion.pdf


Total number of hits on abstract = 459 times

Downloads for 2025

Download data is not yet available.
Published
2023-06-30
How to Cite
Mileva-Karova, M., Petrov, T., Ivanov, K., Nikolov, N., & Gadzhev, T. (2023, June 30). System for assessment and forecast of air quality in populated areas. ANNUAL JOURNAL OF TECHNICAL UNIVERSITY OF VARNA, BULGARIA, 7(1), 52-60. https://doi.org/10.29114/ajtuv.vol7.iss1.267
Section
INFORMATION TECHNOLOGIES, COMMUNICATION AND COMPUTER EQUIPMENT
Bookmark and Share