Development and Validation of a Finite Element Model for Bird Strike Test

  • Tran Thanh Tung FEMA
  • Nguyen Thi Anh FEMA
Keywords: bird strike, SPH, simulation, LS-DYNA

Abstract

A bird strike describes a collision between an aircraft and a bird or a group of birds. A bird strike refers to any collision between a moving vehicle and a fly creatures. Bird strike are studied through experiments or simulations. The testing method produces reliable results, close to reali-ty. However, these practical experiments are expensive and time-consuming. This study performs numerical simulation of bird strike phenomenon using SPH technique. This article presents how to build a bird strike model on LS-DYNA software. The results of the simulation were compared with experiments, demonstrating that the numerical method is a reasonable approach to examine bird strike problems.

References


  • Arachchige, B., Ghasemnejad, H., & Yasaee, M. (2020). Effect of bird-strike on sandwich composite aircraft wing leading edge. Advances in Engineering Software, 148, 102839. Crossref

  • Otero, B. F., Herranz, J., & Malo, J. E. (2023). Bird flight behavior, collision risk and mitigation options at high-speed railway viaducts. Science of The Total Environment, 902, 166253. Crossref

  • Ćwiklak, J., Kobiałka, E., & Goś, A. (2022). Experimental and numerical investigations of bird models for bird strike analysis. Energies, 15, 3699. Crossref

  • Zhang, D., & Fei, Q. (2016). Effect of bird geometry and impact orientation in bird striking on a rotary jet-engine fan analysis using SPH method. Aerospace Science and Technology, 54, 320-329. Crossref

  • Sun, F., Sun, Q., Ni, L., & Liang, K. (2019). Numerical analysis of anti-bird strike performance in structural connection design for a vertical tail leading edge. Thin-Walled Structures, 144, 106319. Crossref

  • Ekici, F., Gümüş, Ö., Uslu, A., & Kale, U. (2023). An investigation of bird strike cases in the aviation sector with a novel approach within the context of the principal-agent phenomenon: Bird strikes and insurance in the USA. Heliyon, 9(7), e18115. Crossref

  • Lamanna, G., De Luca, A., Marzocchella, F., Di Caprio, F., Belardo, M., Di Palma, L., & Caputo, F. (2023). Tendency analysis of a tilt rotor wing leading edge under bird strike events. Forces in Mechanics, 10, 100173. Crossref

  • Pernas-Sánchez, J., Artero-Guerrero, J., Varas, D., & López-Puente, J. (2020). Artificial bird strike on Hopkinson tube device: Experimental and numerical analysis. International Journal of Impact Engineering, 138, 103477. Crossref

  • Juračka, J., Chlebek, J., & Hodaň, V. (2021). Bird strike as a threat to aviation safety. Transportation Research Procedia, 59, 281-291. Crossref

  • Liu, J., Li, Y., & Gao, X. (2014). Bird strike on a flat plate: Experiments and numerical simulations. International Journal of Impact Engineering, 70, 21-37. Crossref

  • Yan, J., Zhang, C., Huo, S., Chai, X., Liu, Z., & Yan, K. (2021). Experimental and numerical simulation of bird-strike performance of lattice-material-infilled curved plate. Chinese Journal of Aeronautics, 34(8), 245-257. Crossref

  • Liu, J., Liu, Z., & Hou, N. (2019). An experimental and numerical study of bird strike on a 2024 aluminum double plate. Acta Mechanica Solida Sinica, 32, 40-49. Crossref

  • LS-DYNA Keyword User’s Manual. (2021). Livermore Software Technology Corporation. Crossref

  • LS-DYNA Theoretical Manual. (2006). Livermore Software Technology Corporation. Crossref

  • Gang, L., Ziming, X., Haitao, S., Wei, C., & Zhang, H. (2021). Experimental study on the impact load of internally supported gelatin bird projectiles. Engineering Failure Analysis, 124, 105336. Crossref

  • Guida, M., Marulo, F., Belkhelfa, F. Z., & Russo, P. (2022). A review of the bird impact process and validation of the SPH impact model for aircraft structures. Progress in Aerospace Sciences, 129, 100787. Crossref

  • Afrasiabi, M., Klippel, H., Roethlin, M., & Wegener, K. (2021). An improved thermal model for SPH metal cutting simulations on GPU. Applied Mathematical Modelling, 100, 728-750. Crossref

  • Siemann, M. H., & Ritt, S. A. (2019). Novel particle distributions for SPH bird-strike simulations. Computer Methods in Applied Mechanics and Engineering, 343, 746-766. Crossref

  • Lopez-Lago, M., Casado, R., Bermudez, A., & Serna, J. (2017). A predictive model for risk assessment on imminent bird strikes on airport areas. Aerospace Science and Technology, 62, 19-30. Crossref

  • Islam, M. R. I., Bansal, A., & Peng, C. (2020). Numerical simulation of metal machining process with Eulerian and Total Lagrangian SPH. Engineering Analysis with Boundary Elements, 117, 269-283. Crossref

  • Zhang, N., Klippel, H., Kneubühler, F., Afrasiabi, M., Röthlin, M., Kuffa, M., Bambach, M., & Wegener, K. (2023). Study on the effect of wear models in tool wear simulation using hybrid SPH-FEM method. Procedia CIRP, 117, 414-419. Crossref

  • Nguyen, T. A., & Tran, T. T. (2020). Drilling modelling using computer simulation. International Journal of Scientific & Technology Research, 9(10), 171-174.

  • Rod, O., Molkov, O., Lutsenko, N., Bolshikh, A., & Storchak, A. (2023). Effect of preloaded state slat structure on the stress–strain state of simulation bird strike. Aerospace Systems. Crossref

  • Fu, Q., Wang, N., Shen, M., Song, N., & Yan, H. (2016). A study of the site selection of a civil airport based on the risk of bird strikes: The case of Dalian, China. Journal of Air Transport Management, 54, 17-30.

  • Hedayati, R., & Sadighi, M. (2015). Bird Strike: An Experimental, Theoretical and Numerical Investigation. Woodhead Publishing.

  • Smetankina, N., Kravchenko, I., Merculov, V., Ivchenko, D., & Malykhina, A. (2020). Modelling of bird strike on an aircraft glazing. In M. Nechyporuk, V. Pavlikov, & D. Kritskiy (Eds.), Integrated Computer Technologies in Mechanical Engineering (Vol. 1113, pp. 325-333). Springer, Cham. Crossref

  • Tung, T. T., Nhi, N. Y., & Anh, N. T. (2021). A study on simulation of metal cutting process based on LS-Dyna. Journal of the Technical University of Gabrovo, 62, 47-55.

  • Wilbeck, J. (1977). Impact behavior of low strength projectiles. AFML-TR-77-134 Air Force Materials Lab, Air Force Wright Aeronautical Lab, Wright-Patterson Air Force Base, OH.

  • Zhang, Z., Li, L., & Zhang, D. (2018). Effect of arbitrary yaw/pitch angle in bird strike numerical simulation using SPH method. Aerospace Science and Technology, 81, 284-293. Crossref


Total number of hits on abstract = 280 times

Downloads for 2025

Download data is not yet available.
Published
2024-06-28
How to Cite
Tung, T., & Anh, N. (2024, June 28). Development and Validation of a Finite Element Model for Bird Strike Test. ANNUAL JOURNAL OF TECHNICAL UNIVERSITY OF VARNA, BULGARIA, 8(1), 12-20. https://doi.org/10.29114/ajtuv.vol8.iss1.310
Section
MECHANICS, MATERIALS AND MECHANICAL ENGINEERING
Bookmark and Share