Mathematical model of the heat interaction between the metal matrix and the reinforcement phase during the production of Metal Matrix Composites

  • Daniela Todorova Spasova Technical university of Varna
  • Krastin Krasimirov Yordanov Technical University of Varna
Keywords: mathematical model, MATLAB FEA, finite elements, casting process simulation, MMCs


This present paper is relevant to the establishment on mathematical model of the heat interaction between the metal matrix (liquid phase- Cu) and a reinforcement (solid- Fe) phase, during the production of the Metal Matrix Composites (MMCs) by the method of capillary molding. In this case is substituted heat object with a mathematical model drawn up and grounded to investigation of the original behavior and properties, clarifies temperature fields in bodies.

The established simulation clarifies temperature fields and the causal liaison between the metal matrix and the reinforcement phase in the formation of the macro and microstructure at the time of production of MMCs. Casting process simulation is an approved method for the optimization of the methods of casting technology. The basic opportunities, ideology and structure of the software "MATLAB FEA" are introduced to simulate casting technology. The possibilities of the product are illustrated by the results obtained from a computer simulation by the technical process of the production of MMCs.


Зиновьев, В. Е. (1989). Теплофизические свойства металлов при высоких температурах. Справочник. Металлургия., с.34 (Russian)

Марков И. "Метод на крайните елементи", София 2014 – с. 67-69 (in Bulgarian)

Марков, К. З. (2002). Математическо моделиране. Университетско издателство" Св. Кли-мент Охридски", с. 43-44. (in Bulgarian)

Радев Р.Й., Спасова Д.Т., Атанасов Н.М., Иванова Р.И., (2010)., "Метод з изработване на леярски форми" Патент BG 65955 B1 (in Bulgarian)

Шубина, М. В., Вдовин, К. Н., Девятов, Д. Х., & Гималетдинов, Р. Х. (2011). Математическое моделирование процесса формирования отливки с учетом фазовых превращений и диффузионных явлений. Теория и технология металлургического производства, (11). (in Russian)

Daniel B., John R., 1976 "Diffusion in Copper and Copper Alloys Part IV. Diffusion in Systems Involving Elemenst of Group VIII", Metallurgy Division, Institute for Materials Re-search, National Bureau of Standards, Washington, p. 1321

Butrymowicz, D. B., Manning, J. R., & Read, M. E. (1976). Diffusion in copper and copper al-loys part IV. Diffusion in systems involving elements of group VIII. Journal of Physical and Chemical Reference Data, 5(1), 103–200. 

Geslin, P.-A., McCue, I., Gaskey, B., Erlebacher, J., & Karma, A. (2015). Topology-generating interfacial pattern formation during liquid metal dealloying. Nature Communications, 6(1). 

Klein, S., Weber, S. & Theisen, W. J Mater Sci (2015) 50: 3586. 

Markov I., 2002 "Computer Implementation of Equivalent Nodal Forces for Timoshenko Plane Frame Element", 1'Universite d'Architecture, de Genie Civil et de Geodesie- Sofia, vol. XL, fasc. VI, p.174-176.

Wang, H., Xu, Y., Shimono, M., Tanaka, Y., & Yamazaki, M. (2007). Computation of Interfa-cial Thermal Resistance by Phonon Diffuse Mismatch Model. MATERIALS TRANSACTIONS, 48(9), 2349–2352. 

Total number of hits on abstract = 23 times

Downloads for 2018

Download data is not yet available.
How to Cite
Spasova, D., & Yordanov, K. (2018, June 30). Mathematical model of the heat interaction between the metal matrix and the reinforcement phase during the production of Metal Matrix Composites. ANNUAL JOURNAL OF TECHNICAL UNIVERSITY OF VARNA, BULGARIA, 2(1), 1 - 8.
Bookmark and Share