Processing of data from complex objects through pattern recognition methods
Abstract
In the description of complex objects, we need methods which could reflect the complex interconnections between components and sift out if possible those of them which are substantial for the specific application. It is offered in this publication the pattern recognition methods should be used as a unified method for processing of data from complex objects. The proposed algorithm may be used in the recognition of the condition of objects of various nature. The indicated examples prove the practical applicability of the methodology as they represent the solution of specific practical problems.
References
Bar-Yam, Yaneer (2002). General Features of Complex Systems. Encyclopedia of Life Support Systems. EOLSS UNESCO Publishers, Oxford, UK. Retrieved 16 September 2014
Duda R.O., P.E. Hart, D.G. Stork (2001), Pattern Classification, Wiley Interscience.
Jolliffe I.T. (2002), Principal Component Analysis, Second Edition, Springer Series in Statistics.
Crossref
Bro, R., & Smilde, A. K. (2014). Principal component analysis. Analytical Methods, 6(9), 2812-2831.
Crossref
Rumbos A.J. (2009). Statistical Theory. Lecture Notes. http://pages.pomona.edu/~ajr04747/Fall2009/Math152/Notes/Math152NotesFall09.pdf
Vapnik, V. N. (2000). The Nature of Statistical Learning Theory. "Springer", N.Y.
Crossref
Naskova, P. (2017). Mathematical Model for Evaluation of the Content of Heavy Metals in Soil by Indirect Plant Signatures. New knowledge Journal of science, 6(3), 149-160.
Божанов, Е. С., & Вучков, И. Н. (1983). Статистически методи за моделиране и оптимизи-ране на многофакторни обекти. Техника.
Konsulova, M., Naskova, P., Plamenov, D., & Malcheva, B. (2017). Recognition and probability of migrant microbiological activity by indirect signature. Pochvoznanie, agrokhimiya i ekologiya/Bulgarian Journal of Soil Science, Agrochemistry and Ecology, 51(3/4), 12-20. (In Bulgarian)
Митев, Д. Г., Д. Димитров, Р. Узунов (2004). Управление на сложни системи. Изд. на Шу-менски унив. Епископ Константин Преславски. Център за дистационно обучение. ISBN 954-577-229-8
Недев А. (2012). Разпознаване на образи и оптимално стохастичеко управление, I част, ИК "Геа-Принт", Варна, ISBN 978-954-9430-80-6
Недев А., К. Тенекеджиев (1994). Техническа диагностика и разпознаване на образи, Издателство ТУ-Варна.
Недев А., М. Бакалова, Г. Антонов, Б. Андреев, С. Сезгин, Д. Камберов (2012). Разпознаване на образи и оптимално стохастичеко управление. Приложение на методите за разпознаване на образи в управлението на стопански, биологични и обществени системи, ИК "Геа-Принт", Варна, ISBN 978-954-9430-91-2
Total number of hits on abstract = 492 times
Downloads for 2024
This work is licensed under a Creative Commons Attribution 4.0 International License.